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Frequency Dependence in Operational Amplifiers

Engineering a First Order Open Loop Response
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down in frequency until gain at

2nd pole is 0 dB

All this area of the gain-frequency plot
is beign thrown away in order to make

the amplifier behave like a first order system

The dominant pole is moved down in frequency (sometimes called
“slugging”) until the 2nd pole frequency is at the unity gain point
(0 dB). The blue area is open loop gain which is lost.
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First Order Opamp Model

Model ‘Derivation’

First Order Opamp Model

In EEE118 we developed an equation for the opamp’s operation

Vo = Av

(
v+ − v−

)
(1)

We now have an expression for Av as well

Av =
A0

1 + j ω
ω0

where τ =
1

ω0
=

1

2πf0
or f0 =

ω0

2π
=

1

2πτ
(2)

where A0 is the DC open loop gain and ω0 is the angular corner
frequency of the first order system (rads−1).

A0 is usually between 104 and 107

ω0 is typically 2π · 10 Hz.
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First Order Opamp Model

Model ‘Derivation’

−

+vi

R2

R1

Av vo Consider a non-inverting amplifier, we can use
the opamp equation (1) to solve for vo/vi ,

vo
vi

=
1

1
Av

+ R1
R1+R2

=
Av

1 + Av R1
R1+R2

(3)

Use an equation for Av (2) and seek a standard form,

vo
vi

=

A0

1+
A0R1
R1+R2

1 + j ω

ω0

(
1+

A0 R1
R1+R2

) ≡
k1

1 + j ω k2
≡ k1

1 + j ω
ω2

(4)

where k1 =
A0

1 + A0R1
R1+R2

= new d.c. gain ≈ R1 + R2

R1
for A0 >> 1

(5)
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First Order Opamp Model

Model ‘Derivation’

The product ω2 k1 is called the gain-bandwidth product of the
amplifier.

ω2 k1 = ω0

(
1 +

A0 R1

R1 + R2

)
· A0

1 + A0 R1
R1+R2

= A0 ω0 (6)

So A0 ω0 is constant for a particular opamp. This is a very
important result. It means that the product of the d.c. gain and
the -3dB bandwidth for a single pole op-amp is independent of the
feedback resistor values (and hence closed loop gain) and therefore
is a properly of the op-amp itself. We can use this idea to make
rapid estimates of bandwidth for a given gain or vice versa. The
consequence of this constant gain bandwidth product can be
visualised in a graph showing amplifiers having several different
gains.
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First Order Opamp Model

First Order Bode Plot
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First Order Opamp Model

Key points about the Model

Key points about the Model
The only information given by manufacturers is the gain
bandwidth product or the unity gain frequency. Anything else
can be calculated by remembering the opamp is assumed to
be first order.
All the roll-offs follow the open loop curve
Each of the three responses shown exhibits first order
behaviour
For the open loop response, the product of the DC gain and
the -3 dB bandwidth is equal to the product of gain and -3 dB
frequency for both closed loop gains shown in the last slide.
For the closed loop gains shown, the product of DC gain and
-3 dB frequency is constant and is equal to the unity gain
bandwidth of the open loop response.

DC gain × -3 dB bandwidth
= open loop unity gain frequency = constant
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First Order Opamp Model

Key points about the Model

Yet more... Key points about the Model

The first order approximation only applies to non-inverting
amplifiers which the manufacture describes as unity gain
compensated.

Real opamps are generally not actually first order. There is
often one or more poles associated with each stage (3 stages
= 3 poles). If, over the range of frequencies where Av > 1,
only one pole dominates then the response will be first order.

The manufacture often chooses to make the VAS stage pole
the dominant one by adding a capacitance between the
collector and base of the VAS transistor often between 10 pF
and 30 pF.

The effect of this capacitance is magnified from the VAS’s
perspective by Miller multiplication.

Miller multiplication can be described by the Miller Transform.
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First Order Opamp Model

‘Easy’ example of GBP in a Calculation

‘Easy’ example

You require a gain of 100 from a TL081 (the opamp in the
amplifier lab). It has a gain bandwidth product of 3 MHz. What
will be the rise time of the circuit be in response to a 10 mV step
input?

f−3dB =
3 MHz

100
= 30 kHz (7)

time constant, τ =
1

ω0
=

1

2π f0
(8)

=
1

2π 30 kHz
(9)

rise time = 2.2 τ (10)

rise time = 2.2 · 4 = 11.17 µs (11)
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First Order Opamp Model

Exam style example of GBP in a Calculation

Exam style example - part 1

A particular amplifier with a dc gain of 100 V/V is observed by
experiment to behave like a first order system. Measurement shows
that the magnitude of amplifier gain has dropped to -6 dB at a
frequency of 120 kHz. Calculate the -3 dB frequency.

The amplifier is first order so it will obey

vo
vi

= k
1

1 + j ω
ω0

where k = 100. (12)

∣∣∣∣∣
100

1 + j 120×103

f0

∣∣∣∣∣ = 50 or
1

1 +
(

120×103

f0

)2
=

(
1

2

)2

(13)
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First Order Opamp Model

Exam style example of GBP in a Calculation

√
4− 1 =

120× 103

f0
= 1.73, f0 =

120× 103

1.73
= 69.4 kHz (14)

GBP = 100 · 69.4 kHz = 6.94 MHz (15)

Exam style example - part 2

A different amplifier also having a dc. gain of 100 V/V has a GBP
of 100 kHz. Evaluate the |gain| and phase shift of this amplifier at
75 kHz.

We can use the GBP to get the -3 dB frequency. f0 = 100 kHz /
100 ∴ f0 = 1 kHz.

vo
vi

= k
1

1 + j ω
ω0

=
100

1 + j f
1×103

(16)
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First Order Opamp Model

Exam style example of GBP in a Calculation

At 75 kHz, |A| =

∣∣∣∣
vo
vi

∣∣∣∣ =
100

[
1 +

(
75
1

)2
] 1

2

(17)

∣∣∣∣
vo
vi

∣∣∣∣ = 1.333̇ V/V or 2.498 dBV (18)

The phase shift, θ = ∠
(
vo
vi

)
= − tan−1

(
f

f0

)
(19)

= − tan−1

(
75

1

)
= −89.236◦ (20)

Where does the minus sign come from in (19)? “Proper”
derivation of argument of complex number needed... Biscuits for
correct answers!
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Miller Transform

Miller Transform

For the two generic amplifier circuits with RC feedback (below),
the Miller transform aims to find the effective value of C and R
from the point of view of the amplifier’s input source and the
amplifier’s load. The effective values of C and R become CoM and
RoM for the output and RiM and CiM for the input. In other words,
find a value of CiM and RiM which makes vi

ii
the same for both

circuits. Similar arguments with RoM and CoM for vo
io

.

A

C

iC

R iR

ii
vi vo

A
iC

CoM

iR

RoM

iC
CiM

iR

RiM

iivi vo
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Miller Transform

In the feedback amplifier,

iR =
vo − vi

R
and iC = (vo − vi ) jωC (21)

In the Miller transformed amplifier, for iR ,

iR =
0− vo
R

= − vi
RiM

or
Avi − vi

R
= − vi

RiM

(22)

so RiM =
R

1− A
(23)

and for iC

iC = (vo − vi ) jωC = −vi jωC = −vi jωCiM (24)

so CiM = C (1− A) (25)

Using a similar analysis, the value of R to ground at the output is
RoM = (A/ (A− 1)) · R and the value of C to ground is
CoM = ((A− 1) /A) · C .
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Miller Transform

The Murky tale of Miller Multiplication and Amplifier “Compensation”

Miller Multiplication and the VAS
From the point of view of the
signal source, the feedback
impedance is (1− A) times lower
than the component face value.
In the amplifier on the right, the
feedback capacitor’s value is
effectively multiplied by (1− A).
This is the Miller multiplication.
The gain of this amplifier is
approximately −gm RVA, so the
apparent value of the capacitor is
increased by (1− −gm RVA). For
500 µA quiescent current and
RVA a quite conservative 50 kΩ,
if C = 33 pF its apparent value

will appear as 326 nF. We use
the Miller effect to our advantage
when lowering the pole frequency
of the VAS...

is rs

−VS

RVA

+VS

vo

C

Source
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Miller Transform

The Murky tale of Miller Multiplication and Amplifier “Compensation”

(1− −gm RVA) is usually large, especially if the VAS is a
Darlington (could be > 50000).
If the VAS is a Darlington then rbe will be very large, this
gives rise to a very long time constant, τ , as seen from the
output of the differential stage.

is rs

C · (1 + gm RVA)

rbe
gmvbe
or β ib

RL

C · (−gm RVA − 1)
−gm RVA

rbersis

C = ccb + Ccomp

gmvbe
or β ib

RL
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Review

Review

Reminded ourselves how to read a Bode plot.

Discussed how the higher order opamp is made to “look” first
order.

Developed an expression for the open loop gain as a first order
low pass system.

Introduced the idea of gain bandwidth product.

Did a simple example GBP / rise time calculation.

Noted some key points about the first order model.

Developed the idea that the VAS’s ccb is increased in order to
compensate the amplifier.

Introduced the Miller Transform, considered the advantage
brought by the Miller Effect for dominant pole positioning.
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Bear


