

James E. Green

Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk

EEE118: Lecture 1

Review

- Looked (again) at Feedback for signals and for DC (quiescent) conditions in a one transistor amplifier with and without emitter decoupling
- The situation where $R_L = R_E$ is called a "phase splitter". • Looked at the small signal equivalent circuit of a BJT in
- terms of a one transistor amplifier
- \blacksquare Gave an example of a performance evaluation
- Noted that the value of the small signal circuit is to show which device and circuit affect the gain, not to give a numerical value (although this is possible.)
- Introduced the idea of an "analogue building block" opamp
 presented the opamp as an implementation of a classical
- feedback system.
- Derived the opamp equation and presented a circuit symbol for an opamp.

Outline

EEE118: Lecture 17

- 1 Opamp Circuits
 - $A_v \rightarrow \infty$: Non-Inverting
 - $A_v \to \infty$: Inverting
 - $A_v \neq \infty$ Non-Inverting
 - $A_v \neq \infty$ Inverting

2 Special Case: Unity Gain Buffer

- 3 Circuits with Multiple Inputs
 - Summing Amplifier
 - Subtractor or Difference Amplifier
- 4 A General Multiple Input Circuit
- 5 Homework 5
- 6 Review
- 7 Bear

EEE118: Lecture 17

Opamp Circuits - Inverting

In the inverting amplifier v^+ is grounded and v_i is applied to R_1 . If $A_v=\infty, \, v^+=v^-$ and since v^+ is connected to ground v^- must be very close to ground. It is often called a virtual earth. The potential is always close to zero but the node is *not* actually connected to zero. To obtain the gain sum currents at the v^- node.

EEE118: Lecture 17

Opamp Circuits - Non Inverting

The most common opamp circuits are the "non-inverting amplifier" and the "inverting amplifier".

LOpamp Circuits

- Notice the "-" sign in the inverting gain formula. This means that the signal is *inverted* i.e. phase shifted by 180° as well as being amplified.
- Two inverting amplifiers in series would give rise to an overall non-inverting amplifier. The first stage would invert the signal and the second would invert it back to its original phase.

Effects of Finite Gain Occasionally it is necessary to consider the effect of finite A_v on the overall gain of the circuit. When considering the effects of finite gain the approximation $v^+ \approx v^-$ does not hold. As before, using potential Α division at the output, R_2 $v^- = v_o \frac{R_1}{R_1 + R_2}$ $v^+ = v_i$ v v_{c} (9) R1 (10)

But now the opamp equation must be used to relate v^+ , v^- and V_O ,

$$v_o = A_v \left(v^+ - v^- \right) = A_v \left(v_i - v_o \frac{R_1}{R_1 + R_2} \right)$$
 (11)

For the inverting case start as before, by summing currents at the v^- node.

$$i_i + i_f = 0 \text{ or } \frac{v_i - v^-}{R_1} + \frac{v_o - v^-}{R_2} = 0$$
 (14)

which can be transposed to yield,

$$v^{-} = v_i \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2}$$
(15)
and $v^+ = 0$ (16)

(16)

Using the opamp equation

$$v_{o} = A_{v} \left(0 - \left[v_{i} \frac{R_{2}}{R_{1} + R_{2}} + v_{o} \frac{R_{1}}{R_{1} + R_{2}} \right] \right)$$
(17)

EE118: Lecture

EEE118: Lecture 1

Input Resistance

- The input to the non inverting circuit goes directly to the opamp so the circuit input resistance is the same as the opamp - very large ($\sim 10^9)$
- The inverting circuit is slightly different. Taking the $A_v \to \infty$ case, an input current, i_i , of $\frac{v_i}{R_1}$ flows from the source.
- Input resistance is the ratio of the applied signal voltage to the current drawn, i.e. $\frac{v_i}{l_i} = R_1$.
- This is typically a few $k\Omega$ which makes inverting amplifiers unsuitable as amplifiers of signals derived from sources with a large thévenin resistance.

or,
$$v_o \left[\frac{1}{A_v} + \frac{R_1}{R_1 + R_2} \right] = v_i$$
 (12)

or,
$$\frac{v_o}{v_i} = \frac{1}{\frac{1}{A_v} + \frac{R_1}{R_1 + R_2}}$$
 (13)

- Note if $A_{\nu} \to \infty$, $\frac{1}{A_{\nu}}$ becomes very small and (13) becomes (4).
- A_v is equivalent to G in the classical feedback system.
- It is between several thousand and several hundred thousand in most opamps.
- A_{v} is actually frequency dependent, but the frequency dependence of A_v is not covered in this course.

or
$$v_o \left[\frac{1}{A_v} + \frac{R_1}{R_1 + R_2} \right] = -v_i \frac{R_2}{R_1 + R_2}$$
 (18)

or
$$\frac{v_o}{v_i} = \frac{-\frac{\kappa_2}{R_1 + R_2}}{\frac{1}{A_v} + \frac{R_1}{R_1 + R_2}}$$
 (19)

Particular arrangements of resistors and capacitors in opamp circuits can be used to produce circuits which perform mathematical functions such as integration and differentiation.

Unity Gain Buffer

The unity gain buffer is a special case of the non inverting amplifier, in which $R_2=0$ and $R_1=\infty.$ Here $v^-=v_o$ so the opamp equation becomes,

$$v_{o} = A_{v} (v^{+} - v^{-}) = A_{v} (v_{i} - v_{o})$$
(20)
(20)
$$v_{i} = \frac{1}{\frac{1}{A_{v}} + 1} = \frac{A_{v}}{1 + A_{v}}$$
(21)
(21)

If A_v is large, $\frac{v_o}{v_i}$ is very close to unity. This circuit is used to isolate high impedance sources from low impedance loads; i.e. it has a high power gain.

EEE118: Lecture 17

This can be transpose

$$v^{-} = v_2 \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2}$$
(23)

 v^+ is a potentially divided version of v_1

 v^+

$$= v_1 \frac{R_2}{R_1 + R_2} \tag{24}$$

equating v^+ and v^- ,

$$v_2 \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2} = v_1 \frac{R_2}{R_1 + R_2}$$
(25)

or
$$v_o \frac{R_1}{R_1 + R_2} = v_1 \frac{R_2}{R_1 + R_2} - v_2 \frac{R_2}{R_1 + R_2}$$
 (26)

or
$$v_o = \frac{R_2}{R_1} (v_1 - v_2)$$
 (27)

Note that the accuracy of the subtraction depends upon matching the the two R_1 's and R_2 's.

EEE118: Lecture 17

Subtracting Amplifier

Several avenues of solution are available for this circuit. Assume $A_{v} = \infty$ and so $v^{+} = v^{-}$.

One approach is to work out v^+ and v^- and then equate them to get v_o in terms of v_1 and v_2 . Summing currents at the v^- node,

$$i_i + i_f = 0 \text{ or } \frac{v_2 - v^-}{R_1} + \frac{v_o - v^-}{R_2} = 0$$
 (22)

A General Multiple Input Circuit

The subtractor circuit can be generalised to allow more than two inputs. Such a circuit could be analysed by find v^+ and v^- and equating them, or by using the principle of superposition. Superposition has the advantage that at each stage the circuit is reduced to a much simpler single input circuit. For example,

EEE118: Lecture 17

By changing the variable names the output voltage due to \textit{v}_2 can be found,

$$v_o|_{v_2} = v_2 \left(\frac{-R_f}{R_2}\right) \tag{29}$$

The output due to v_3 leads to a more complex circuit however.

$$\therefore \frac{v_o}{v_3} = \frac{v_o}{v^+} \cdot \frac{v^+}{v_3} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_f + R_1 / R_2}{R_1 / R_2}$$
(32)

or
$$v_+|_{v_3} = v_3 \frac{R_4}{R_3 + R_4} \cdot \frac{R_f + R_1 / / R_2}{R_1 / / R_2}$$
 (33)

By a similar argument,

$$v_o|_{v_4} = v_4 \frac{R_3}{R_3 + R_4} \cdot \frac{R_f + R_1 / / R_2}{R_1 / / R_2}$$
(34)

$$v_{o_{\text{total}}} = rac{v_o}{v_1} + rac{v_o}{v_2} + rac{v_o}{v_3} + rac{v_o}{v_4}$$
 (35)

Note: if any of the inputs have both a DC and AC component, superposition allows them to be treated separately.

EEE118: Lecture 17

Review

Considered circuit diagrams for a common set of opamp circuits and derived results for the output voltage due to one or more inputs:

- Non inverting amplifier with $A_v = \infty$
- Inverting amplifier with $A_{
 m v}=\infty$
- Non inverting amplifier with $A_v \neq \infty$
- Inverting amplifier with $A_{\nu} \neq \infty$
- Unity gain buffer
- Multiple input circuits
 - Summing Amplifier
 Difference Amplifier (Subtractor)
- General multiple input opamp circuit

EEE118: Lecture 1

EEE118: Lecture 17 http://hercules.shef.ac.uk/eee/teach/resources/eee118/eee118.html